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Abstract. The liquid–vapour interface of the restricted primitive model (RPM) of ionic fluids is
investigated within a square-gradient theory. We compute density profiles and interfacial tensions
for different temperatures using Debye–Hückel (DH) theory and its recent extension for ion-pair
formation and interactions between the dipolar ion pairs and free ions developed by Fisher and
Levin. This Fisher–Levin (FL) theory is known to give an accurate description of the coexistence
curve of the RPM. To account for the inhomogeneities in the interfacial region, the local free-
energy density is expanded in terms of the density gradient. For small gradients, e.g. reasonably
close to the critical point, such an expansion can be truncated after the square-gradient term. The
coefficient of the latter is calculated from the direct correlation function using an approximate
(quadratic) hypernetted-chain (AHNC) relation and, alternatively, from an extended van der Waals
approach in conjunction with different approximations to the local density. The results from the
AHNC relation and various local density approximations in the thermodynamic framework of DH
theory and FL theory, respectively, are compared, and it is asserted that the AHNC relation in
conjunction with FL theory predicts reliably the interfacial properties of the RPM even within
this simple square-gradient theory. In contrast to the situation for simple fluids, the local density
approximation must be chosen carefully for ionic fluids since properties such as the interfacial
thickness and the surface tension may vary by a factor of three or four depending on the applied
local density approximation.

1. Introduction

The properties of electrolytes, or ionic fluids in general, have aroused renewed interest in the
context of an apparently classical (mean-field-like) critical behaviour of these fluids, which
was suspected to be caused by long-range Coulombic interactions. About a decade ago,
Singh and Pitzer [1] published the liquid–liquid coexistence curve of the salt tri-ethyl-n-hexyl
ammonium tri-ethyl-n-hexyl borate dissolved in diphenyl ether, which could be described
by the classical exponent of β = 1/2. Subsequent measurements of the turbidity of this
system by Zhang et al [2] yielding the exponent γ = 1 seemed to support the view that this,
indeed, was a classical system. (Later experiments by Wiegand et al [3], in which only Ising-
type behaviour was found, have cast serious doubts on these earlier measurements.) For other
systems, solutions of the organic salt tetra-n-butyl ammonium picrate in long-chain alcohols of
low dielectric permittivity, Narayanan and Pitzer [4] observed asymptotic Ising-type behaviour,
but in sharp contrast to what is found for simple fluids and fluid mixtures, a crossover from
regular behaviour away from the critical point to the asymptotic Ising-like behaviour occurred
only very close to the critical point, i.e. at unusually low reduced temperatures.
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Motivated by the astonishing experimental findings reported in [1] and [2], several groups
set out to explain the observed effects theoretically. Most theoretical studies of electrolytes are
based on the simplest model of ionic fluids, the restricted primitive model (RPM). Within this
model, the ionic fluid consists of charged hard spheres of equal diameter σ , half of which carry
a charge of +q, the other half a charge of −q. These spheres are immersed in a dielectric
continuum of dielectric constant ε. Reduced thermodynamic variables, temperature and
number density, appropriate to this model are introduced via T ∗ = kT εσ/q2 and ρ∗ = ρσ 3,
where k is Boltzmann’s constant.

The first step in the theoretical investigations was to find or develop a theory which
predicts the location of the critical point and the coexistence curve correctly. From Monte
Carlo simulations of the RPM, the critical point was known to be located somewhere in the
region T ∗ = 0.05–0.06 and ρ∗ = 0.025–0.05 [5–7]. Thus, it was concluded that the existing
‘standard’ theories for ionic fluids, the Debye–Hückel (DH) theory (T ∗

c = 0.0625, ρ∗
c =

0.005), the mean-spherical approximation (MSA, T ∗
c = 0.0786, ρ∗

c = 0.0145) and its self-
consistent version, the generalized (G)MSA (T ∗

c = 0.0785, ρ∗
c = 0.015) do not suffice to

account for the thermodynamic behaviour of the RPM [8, 9]. Since both of these major types
of theories underestimate the critical density, there were attempts to include the effect of ion
pairing, which is known to be pronounced near the critical point [10, 11] and which, at a
given total density, reduces the density of free ions. This in turn means that the overall ionic
density needed to produce a particular density of free ions, which apparently governs the phase
transition (at least within DH-based theories), is increased. Pairing theories based on the MSA
were put forward by Stell and co-workers [12], who included interactions between dipolar
ion pairs and free ions, and by Guillot and Guissani [13], who also accounted for dipole–
dipole interactions. All theories rooted in the MSA, however, tend to yield too high a critical
temperature (T ∗

c > 0.07), even though the critical density was successfully increased. The
DH-based theories must be viewed as more successful with regard to predicting the critical
temperature. Levin and Fisher [14] allowed for Bjerrum ion pairing and accounted for the
dipole–ion interaction by solving the linearized Poisson–Boltzmann equation as is done in DH
theory for ion–ion interactions. This Fisher–Levin (FL) theory predicts a coexistence curve
in substantial agreement with simulation results; furthermore the critical point parameters are
T ∗
c = 0.057 406 71 and ρ∗

c = 0.027 75, reasonably close to the results of the simulations of
Caillol [6] and of Orkoulas and Panagiotopoulos [7]. To our knowledge, there have been two
attempts to improve upon FL theory by accounting for dipole–dipole interactions. Guillot and
Guissani [13] just added the dipole–dipole term from the usual Onsager theory for dipolar
fluids, while the present authors developed a more consistent fusion of DH theory and the
Onsager model [15]. Both approaches, however, lead to lower critical densities as compared
to FL theory and thus yield coexistence curves in worse agreement with simulations. At the
moment, the FL theory must be regarded as the most successful theory for the RPM. More
recent simulations, applied in conjunction with finite-size scaling techniques [16, 17] and,
thereby, accounting for critical fluctuations, estimate the critical point to be at T ∗

c = 0.049
and ρ∗

c = 0.07–0.08, which is at higher densities and lower temperature than the earlier
predictions. The fact that the FL theory as a mean-field theory overestimates the critical
temperature (and, due to the pronounced asymmetry of the coexistence curve, underestimates
ρ∗
c ) is not surprising. Note, however, that the revised location of the critical point still lies on

the diameter of the FL coexistence curve. Despite the shift in the critical parameters following
from the more recent simulations, the location of the coexistence curve away from the critical
point is unchanged, so the good agreement with the results of FL theory remains valid [17].
For our purpose here, the study of interfacial properties, which are evaluated at ‘safe’ distances
from the critical point, the FL theory is reliable.
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Having now at hand more or less accurate theories for the thermodynamic bulk properties of
the RPM, the question of the crossover scale is addressed by applying the Ginzburg criterion.
The so-called Ginzburg temperature signals the breakdown of a mean-field description as
the critical temperature is approached on the critical isochore. Thus, the Ginzburg criterion
estimates the extent of the critical region and provides the crossover scale [18].

All that is needed to apply the Ginzburg criterion in addition to a thermodynamic theory
which predicts a critical point is the square-gradient term in the Landau–Ginzburg expansion
of the free-energy density. This term can be obtained from the direct correlation function Cik .
Within the MSA, the direct correlation function is given by Cik(r > σ) = −βuik , where
β = 1/kT and uik denotes the interaction potential between two particles. For the RPM,
this pairwise interaction potential is given by uik = qiqk/εrik , where rik denotes the distance
between particles i and k. Due to the electroneutrality condition, this contribution vanishes
entirely, so the MSA predicts an unphysical, negative coefficient of the square-gradient term,
which is caused by the hard-sphere part. Because of this pathological feature of the MSA,
the first application of the Ginzburg criterion to the RPM by Leote de Carvalho and Evans
employed the GMSA, which, because of the additional terms in the direct correlation function
that ensure thermodynamic self-consistency, yields a positive coefficient of the square-gradient
term [19]. The second approach, by Lee and Fisher [20], used the FL theory and functional
differentiation to obtain the direct correlation functions and the square-gradient term from a
DH equation which was generalized to inhomogeneous systems. This generalized (G)DH
theory also yields the correct expression for the correlation length in the low-density limit, as
was shown later by Bekiranov and Fisher by evaluating the cluster integrals explicitly [21].
GDH theory predicts the correlation length to diverge as ξ = (b/9216πρ)1/4 in the low-density
limit, where b = σ/T ∗ is the Bjerrum length. The third attempt to calculate the Ginzburg
temperature of ionic fluids was also based on the DH theory and its extensions, but employed the
approximate (quadratic) hypernetted-chain (AHNC) relation Cik = −βuik + (1/2)h2

ik to relate
the known pair correlation functions, the total pair correlation function hik or, equivalently, the
pair distribution function gik , to the direct correlation function [22]. Alternatively, different
local density approximations were applied to calculate the square-gradient term from the theory
for the homogeneous system by an extended van der Waals ansatz [22]. All three approaches
briefly outlined above agree that the Ginzburg temperature of the RPM should not be smaller
than that of a simple fluid with short-range interactions. So, the experimental findings of mean-
field-type criticality or unusually small regions of nonclassical Ising-like behaviour cannot be
explained or rationalized by a Ginzburg-type analysis.

In our calculations using the extended van der Waals approach [22], the coefficient of
the square-gradient term turned out to be extremely sensitive to the local density approx-
imation that was applied to calculate it from the pair distribution function of the homogeneous
system. This sensitivity causes a variation of the Ginzburg temperature over four orders
of magnitude [23]. It became clear that such a sensitivity, which is not observed for simple
fluids [22,24], would affect all quantities that may be calculated from a square-gradient theory,
such as interfacial properties, although to a lesser extent than the Ginzburg temperature, because
the coefficient of the square-gradient term, c, enters the expression for the surface tension with
a power of 1/2 (see section 2.2 below), which is to be contrasted with the third power in the
Ginzburg temperature. Discrepancies between the Ginzburg temperatures within the various
local density approximations of three or four orders of magnitude will, thus, correspond to
factors of three or even almost five by which the predicted surface tensions differ. Since the
coefficient of the square-gradient term also enters the Ornstein–Zernike correlation length ξ
as c1/2 and the interfacial thickness is approximately given by 4ξl , where ξl is the correlation
length in the liquid phase, we can expect similar factors to appear in these properties as well.
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The unusually strong dependence of the square-gradient term (and all properties that can
be calculated from it) for the ionic fluid within DH theory came as a surprise since, for simple
fluids, this dependence is known to be rather weak [22,24]. We attribute this peculiarity of ionic
fluids to their exceptional virial expansion: the thermodynamic behaviour of simple fluids, like
e.g. a square-well fluid with a reasonably short-range interaction potential, is dominated by the
second virial coefficient [22] (in addition to the ideal-gas part). The partial pair distribution
function corresponding to the second virial coefficient, however, is just the Boltzmann factor
of the pair potential, exp(−βuik), and is, therefore, density independent. This, in turn,
implies that the local density approximation employed to calculate the square-gradient term
is irrelevant on the level of the second virial coefficient. Differences stemming from the
applied local density approximations enter through the third and higher virial coefficients,
whose contributions are minor in the region where a square-gradient theory is expected to
be valid, i.e. at comparatively low densities and, therefore, small density gradients [22]. For
ionic fluids, however, the second virial coefficient does not represent the major contribution
in any sense: the first term to describe deviations from the ideal behaviour—given by the
Debye–Hückel limiting law—is of order ρ3/2 and, thus, of lower order than the second virial
coefficient. Furthermore, the pair distribution function corresponding to this term does depend
on the density through the Debye screening length. Therefore the local density approximations
affect the square-gradient term even at very low densities. At higher densities, there will be
contributions from the limiting law as well as from higher (ionic) virial coefficients that keep
the second virial coefficient from playing a dominating role comparable to that in the situation
for simple fluids.

Recently, Groh et al calculated the interfacial tension and density profiles for the liquid–
vapour interface of the RPM using the MSA [25]. Since the MSA direct correlation function
yields, as mentioned above, no reasonable results for the square-gradient term, they obtained
a ‘constructed’ direct correlation function from the pair correlation function hik by means of
a local density approximation, namely the LADA (‘locally averaged density approximation’),
which assumes the relevant density at which to evaluate the correlation function to be given
by ρ̄ = (ρ(r) + ρ(r′))/2. This enabled them to obtain properties of the inhomogeneous fluid
even though using the direct correlation function of the MSA (without further approximations)
would have yielded nothing of value at this point.

As a direct consequence of the experience gained in the computations of the Ginzburg
temperature, we calculated the density profiles and surface tensions for the liquid–vapour
interface of the RPM within DH theory using different local density approximations to compute
the square-gradient term within a gradient theory [23]. As suspected from the large differences
of the Ginzburg temperatures in the various local density approximations, the surface tension
as well as the interfacial thickness vary by a factor of three depending on which local density
approximation is employed because of the above-mentioned square-root dependence of these
quantities on the coefficient of the square-gradient term. The only criterion that can be used
to decide which value is to be believed is the behaviour of the correlation length in the low-
density limit. The GDH theory of Lee and Fisher and the AHNC relation yield the exact result,
while the LADA treatment leads to a wrong prefactor of

√
14 in front of the correct Lee–

Fisher expression. This prefactor pertains, almost unchanged, to finite densities—that is, to
the correlation length in the liquid phase ξl , to the interfacial thickness, which is approximately
given by 4ξl , and to the interfacial tension as well [23] (cf. table 1). Thus one might suspect
(although this has not been proved since the MSA may behave in a different way to the DH
theory for different local density approximations) that a similar factor may be present in the
results of Groh et al, and in the discussion section of this paper we will give an argument in
support of this proposition.
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Even though the DH-based treatment [23] demonstrated the relevance of the local density
approximation to the interfacial properties, one cannot expect to obtain numerically reliable
results for the interfacial properties of the RPM from it, as the description of the thermodynamic
behaviour of this system by DH theory is rather poor [14] (see also figure 1). It is the purpose
of this paper to calculate the interfacial properties within the much more accurate FL theory
using reliable methods to obtain the square-gradient term in a gradient theory. After an outline
of the theory employed in section 2, we briefly review the results for the DH-based calculation,
which already appeared in this journal in a letter to the editor [23], and compare them to the
predictions within FL theory in section 3. This section will also contain a discussion of the
results obtained and an attempt to clarify the relation to the approach of Groh et al, which goes
beyond the square-gradient theory. Section 4 summarizes the main conclusions of this work.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
ρ∗

0.04

0.045

0.05

0.055

0.06

T ∗

Figure 1. Coexistence curves for the Debye–Hückel theory (dashed) and for the Fisher–Levin
theory (continuous), and simulation results of Caillol [6] (diamonds) and of Orkoulas and Pana-
giotopoulos [7] (stars).

2. Methodology

The computation of interfacial properties, like e.g. the interfacial tension, calls for an evaluation
of the free-energy density of nonuniform systems. In principle, this evaluation would require
the correlation functions appropriate to the inhomogeneous fluid; as these are basically
unknown, one usually relies on approximation schemes, which allow for an approximate
treatment based on the correlation functions of homogeneous fluids. One of these methods is
the gradient theory, in which the local free energy is expanded in powers of the density gradient
to account for the contribution of inhomogeneities. For small gradients, this expansion may be
truncated after the square-gradient term. In this square-gradient theory (which is also called
Landau–Ginzburg theory in a different context, but here the concept goes back to van der
Waals), the local free-energy density consists of two terms: the free energy of a corresponding
homogeneous system plus the square-gradient term that arises from inhomogeneities. The main
advantage of this approach is that both terms can be calculated from the correlation functions
of uniform fluids, either from the pair distribution function gik or from the direct correlation
function Cik . This procedure will be outlined in the following. In a second subsection, we
will briefly summarize how the interfacial properties are calculated within the square-gradient
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theory. The third subsection contains the details of the application of the formalism to the
RPM within DH and FL theory.

2.1. Square-gradient theory

As mentioned in the introduction to this section, the free energy of a nonuniform system can
be determined in principle. This total free energy consists of three terms: A = Aid +Ahc +Ares.
The ideal-gas part Aid is known and the hard-sphere contribution Ahc will play no role in the
present study because of the low densities involved. The residual part can be obtained from

βAres = 1

2

∫ β

0

∫ ∫ ∑
i,k

ρi(r)ρk(r
′)uik(rik)gik(r, r′, β; {ρ}) dr dr′ dβ (1)

where β = 1/kT , ρi is the number density of species i at r, uik is the interaction potential
between particles of species i and k, whilegik is the pair distribution function for the nonuniform
system. As such it depends not only on the separation rik , but explicitly on both loci r and
r′ as well as on the set of all densities (abbreviated by {ρ}) and their spatial distribution.
Unfortunately, these pair distribution functions for the inhomogeneous system are unknown.
To make any progress, one may, as an extension of van der Waals’ theory of surface tension,
replace the functional gik(r, r′, β; {ρ}) by the function gik(r, r′, β, ρ1(rm), . . . , ρn(rm)) [22].
The densitiesρp withp = 1, . . . , n are supposed to include all relevant species, whose densities
enter with their value at an as yet unspecified, but fixed position rm somewhere on the line
connecting r and r′. As it is not clear a priori which point rm on that line is to be chosen, we
set rm = r + zrik , with rik = r′ − r, so that z takes on values between 0 and 1. Then we
expand the residual part of the local free-energy density of species i, φi(r) = βAi(r)σ

3/V ,
given by

φres
i (ρi(r), β, ρ1(rm), . . . , ρn(rm))

= σ 3

2
ρi(r)

∑
k

∫ β

0

∫
ρk(r

′)uik(rik)gik(r, r′, β, ρ1(rm), . . . , ρn(rm)) dr′ dβ

(2)

whereV is the volume, in terms of rik , about r. After truncation at the square-gradient level and
an integration by parts, which converts terms of the type ρi(r)∇2ρk(r) into ∇ρi(r) ·∇ρk(r),
one is left with the two contributions that arise in the square-gradient theory:

φres
i,hom(r) = σ 3

2
ρi(r)

∑
k

ρk(r)

∫ β

0

∫
uik(rik)gik(rik, β, ρ1(r), . . . , ρn(r)) drik dβ (3)

φres
i,∇2(r) = −σ 3

12
∇ρi(r) ·

∑
k

∇ρk(r)

∫ β

0

∫
r2
ikuik(rik)

× gik(rik, β, ρ1(r), . . . , ρn(r)) drik dβ

− σ 3

12

∑
k

n∑
p=1

[
z2ρk(r)∇ρi(r) + (1 − z)2ρi(r)∇ρk(r)

] · ∇ρp(r)

×
∫ β

0

∫
r2
ikuik(rik)

∂gik(rik, β, ρ1(r), . . . , ρn(r))

∂ρp(r)
drik dβ. (4)

Equation (3) represents the free-energy density of a hypothetical homogeneous system with the
set of densities {ρ(r)}, while (4) gives the square-gradient contribution to the local free-energy
density.
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To obtain explicit numerical results for a particular model fluid, we need to fix the
value of z. This is equivalent to selecting a relevant density (at rm) at which to evaluate
the pair distribution functions. At this point, the local density approximations come into
play. The simplest, naive treatment would be to take no account of the local density and to
evaluate the pair distribution functions at the mean overall density (MODA [23]). In a more
elaborate (and more reasonable) approach, one may regard the density at a position halfway
between r and r′ as the relevant one and approximate ρ̄ = ρ((r + r′)/2) (‘density at average
position approximation’, DAPA). Equally reasonable is to average the densities at the two loci
and set ρ̄ = (ρ(r) + ρ(r′))/2 (‘locally averaged density approximation’, LADA). A fourth
approach [22,23] averages over all values of z (‘Boltzmann-averaged position approximation’,
BAPA, since, ideally, the contribution of each value of z would be weighted by the Boltzmann
factor that this particular value of z produces in the free energy). If the averaging is performed
with equal weights, one obtains 〈z2〉 = 〈(1 − z)2〉 = 1/3. As seen in (4), all local density
approximations except for MODA involve derivatives of the pair distribution functions (of the
uniform system) with respect to the densities. (Within the LADA approach, even the second
derivatives appear.)

Alternatively, the square-gradient term may be calculated from the direct correlation
functions (also of the homogeneous system) according to [26]

φres
i,∇2(r) = σ 3

12

∑
k

∫
r2
ikCik(rik) drik ∇ρi(r) · ∇ρk(r). (5)

Here and in the following equations, we omit the temperature and density dependence of
the correlation functions for notational simplicity and retain the interparticle distance as the
only argument. Note that (5) involves no local density approximation because it relies on the
reasonable assumption that the density does not change appreciably within the range of the
direct correlation function [27]. This is to be contrasted with the situation for the much longer-
ranged pair distribution function. In principle, however, one could devise LADA or DAPA
versions of this equation as well when replacing the unknown direct correlation function of
the inhomogeneous system as defined by the second functional derivative of the free-energy
functional by the approximately known direct correlation function of the homogeneous system.

The direct correlation function is related rigorously to the total correlation function
hik = gik − 1 via the Ornstein–Zernike relation [28]:

hik(rik) = Cik(rik) +
∑
j

ρj

∫
Cij (rij )hjk(rjk) drj . (6)

Given a particular pair potential uik , the unknown correlation functionsCik and hik can only be
calculated if a second equation relating them, the closure, is assumed or postulated. The most
prominent closure relations are the MSA, the Percus–Yevick (PY) closure and the hypernetted-
chain (HNC) relation, which is given by [28]

Cik = −βuik + hik − ln(1 + hik). (7)

This can be further approximated by expanding the logarithm in powers of hik and truncating
this series after the quadratic term to give

Cik = −βuik +
1

2
h2
ik. (8)

We will use this approximate (A)HNC relation as a shortcut from the known hik (within DH
and FL theory [29]) to the square-gradient term.

A third approach, used by Lee and Fisher in their GDH theory, obtains the direct correlation
functions by functional differentiation of the free energy of the inhomogeneous system [20].
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Note that using the AHNC relation or the GDH theory does not necessarily require a local
density approximation as the square-gradient term is calculated via the direct correlation
function from a theory for the bulk fluid.

For any given uik and gik or hik , both contributions to the local free-energy density as given
in (3) and (4) or (5) can now be calculated. The next subsection explains how this gradient
theory is used to compute the interfacial properties of interest to us.

2.2. Interfacial properties within square-gradient theory

As outlined in the previous subsection, the local free energy of the system now consists of the
homogeneous part and the square-gradient contribution: φ(r) = φhom(r) + φ∇2(r). The first
quantity of interest that we can calculate within this square-gradient mean-field theory is the
second moment (Ornstein–Zernike) correlation length, which, in units of σ , is

ξ ∗ = ξ/σ =
[
c

(
∂2φhom

∂ρ∗2

)−1
]1/2

. (9)

Here, c is the coefficient of the square-gradient term as it appears in φ∇2 = c(∇∗ρ∗)2 and
(∂2φhom/∂ρ

∗2)−1 is the susceptibility (compressibility) of the system.
As outlined in detail elsewhere [30], the density profile across the liquid–vapour interface

can be found from∫ ρ∗

ρ∗
0

(
T ∗c(ρ∗)

2#ω(ρ∗)

)1/2

dρ∗ = −z/σ = −z∗ (10)

where z is the coordinate perpendicular to the planar liquid–vapour interface. In the above
equation, ρ∗ denotes ρ∗(z∗), the spatially varying density in the interface. ρ∗

0 is the density
at z∗ = 0 taken to be the arithmetical mean of the densities in the liquid phase and in the
vapour phase: ρ∗

0 = ρ∗(z∗ = 0) = (ρ∗
l + ρ∗

v )/2. The quantity #ω(ρ∗) is defined by
#ω(ρ∗) = ω(ρ∗) + P ∗

bulk. The reduced bulk pressure is introduced via P ∗
bulk = Pbulkεσ

4/q2

for the RPM. ω(ρ∗) = T ∗(φhom(ρ
∗) − ρ∗µ∗

bulk), where µ∗
bulk = βµbulk denotes the reduced

bulk chemical potential, varies with the local density and, therefore, across the interface. P ∗
bulk

and µ∗
bulk are obtainable from φhom. The above expression (10) is derived by minimizing the

square-gradient free-energy functional

I ({ρ∗}) =
∫ +∞

−∞

[
#ω(ρ∗) +

1

2
T ∗c(ρ∗)

(
∂ρ∗

∂z∗

)2
]

dz∗ (11)

using the Euler–Lagrange equation [27, 30, 31]. Within gradient theory, the two terms in the
integrand of (11) measure the gain and loss of free-energy density when a certain density profile
is established. The interplay of these contributions determines, via the minimization condition,
the equilibrium density profile, which represents a compromise between the penalties in
the free energy caused by having densities different from a bulk density on the one hand
and by introducing a density gradient on the other hand. The minimization condition is
equivalent to imposing that the chemical potential be constant throughout the system [31].
The dimensionless surface tension γ ∗ = γ εσ 3/q2 is obtained from

γ ∗ =
∫ ρ∗

l

ρ∗
v

√
2T ∗c(ρ∗)#ω(ρ∗) dρ∗. (12)

In addition to this quantity, we define the reduced interfacial tension γ̄ = γ ∗/T ∗
c = βcγ σ

2.
Another quantity of interest is the thickness of the interface, which we will simply take as

the ‘10–90’ thickness, i.e. the distance over which the density varies from ρ∗
v + 0.1(ρ∗

l − ρ∗
v )

to ρ∗
v + 0.9(ρ∗

l − ρ∗
v ).



The liquid–vapour interface of ionic fluids 2645

2.3. Application of the formalism to the RPM

As mentioned in the introduction, we will first account for the thermodynamic properties of
the RPM by the DH theory, which considers only the interactions of free ions (II), and then,
as an improvement over DH theory, by the FL theory. Here, following basically the ideas of
Bjerrum, the ions form pairs, which themselves represent dipolar particles that, in turn, interact
with the free ions. This dipole–ion (DI) interaction is treated in a DH-style approach [14].

In both theories, the hard-sphere contribution is neglected because of the low densities.
The ideal-gas contribution of species i is given by

φid
i = ρ∗

i

[
ln(ρi)

3
i )− 1

]
(13)

where )i denotes the thermal de Broglie wavelength. The residual term is calculated from
(3), with uik and gik as appropriate for the II interaction within DH theory:

uII
ik(rik) = qiqk

εrik
(14)

gII
ik(rik) = 1 − β

qiqk

εrik

eκ(σ−rik)

1 + κσ
. (15)

Here κ is the inverse Debye length and, with x = κσ = (4πρ∗
i /T

∗)1/2, the well-known result
for φres

hom within DH theory is

φ
res,II
hom = − 1

4π

[
ln(1 + x)− x +

1

2
x2

]
. (16)

The square-gradient term is computed according to (4) within the extended van der Waals
approach. The coefficient c of this term may be represented as [23]

c = c0 + a1c1 + a2c2 (17)

with

c0 = 1

12πρ∗
i

2

[
ln(1 + x) + x +

1

2
x2

]
(18)

c1 = − 1

24πρ∗
i

2

2x + 4x2 + x3 + 4(1 + x) ln(1 + x)

1 + x
(19)

c2 = 1

48πρ∗
i

2

6x + 24x2 + 23x3 + 4x4 + 24(1 + x)2 ln(1 + x)

(1 + x)2
(20)

where the term cn arises from the nth derivative of the pair distribution function with respect
to density. The different local density approximations used in the expansion lead to different
prefactors a1 and a2. While the MODA approach involves no derivative with respect to density,
i.e. a1 = a2 = 0, BAPA and DAPA contain terms from the first derivative and therefore have
a1 = 2/3 and a1 = 1/2, respectively, while still a2 = 0. Within LADA, even the second
derivative appears and leads to a1 = 1 and a2 = 1/4.

The AHNC relation yields [23]

cAHNC = π

12

1 + 2x + 2x2

x3T ∗2(1 + x)2
(21)

via (5), whereas the GDH theory gives [20]

cGDH = 1

96πρ∗
i

2

[
ln

(
(1 + x)10(

1 + x + 1
3x

2
)9

)
− x − 5x2 − 8x3

2(1 + x)2

]
. (22)
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The last two expressions for the coefficient c yield rather similar results, which can be
demonstrated by expanding the logarithm in (22), casting the result into the form of (21), and
comparing just the numerators of the second fraction. The GDH result 1 + 2x + 8x2/3 + O(x3)

is identical to the AHNC expression to order O(x). This fact will be important when we
consider the low-density limit. The local density approximations MODA, LADA and DAPA,
however, differ already in the leading x0-term by yielding coefficients of 32, 14 and 8, resp-
ectively, instead of unity. The BAPA approach represents an exception; here, the leading term
is 32x2/9, which causes a pathological behaviour at very low densities. The consequences of
this behaviour for the correlation length in the dilute vapour phase and the asymmetry of the
resulting density profile have been explained in detail elsewhere [23].

Now, with the above expressions, the interfacial properties and the correlation length can
be calculated in the framework of DH theory; the results are given in section 3.1.

For the FL theory, things are a bit more complicated. First, in this chemical picture, the
fluid is regarded as a reacting mixture of free ions and ion pairs. The total ionic density, which
is the thermodynamically relevant quantity, is given by ρ = ρi + 2ρp, where ρi , as before,
denotes the density of free ions and ρp that of pairs. Within FL theory [14], the ion pairs are
assumed to be of spherical shape with a diameter of σ2 = aσ , with a = 1.162, and to possess
a dipole moment of magnitude µ = qσ . While the II contribution to the free-energy density
remains the same as in DH theory, the dipole–ion part is given by [14]

φDI
hom = − 3ρ∗

p

a5x2T ∗

[
ln

(
1 + ax +

1

3
a2x2

)
− ax +

1

6
a2x2

]
. (23)

This result is also obtained from (3) using the appropriate interaction potential and pair
distribution function [29]:

uDI
ik (rik) = qiµk

εr2
ik

r̂ik · µ̂ (24)

gDI
ik (rik) = 1 − β

qiµk

εr2
ik

r̂ik · µ̂ (1 + κrik)eκ(aσ−rik)

1 + ax + 1
3a

2x2
(25)

where the circumflexes denote unit vectors. To determine the degree of ion pairing, an
association equation derived from the mass action law for pairs in equilibrium with free
ions [14] is used:

ρ∗
p = ρ∗

i
2

4
K(T ∗)e2µ∗

i
ex−µ∗

p
ex
. (26)

Here,µ∗
j

ex is the reduced excess chemical potential andK(T ∗)denotes the association constant,
for which we choose a truncated Bjerrum expression:

K(T ∗) = 4πe1/T ∗
T ∗

9∑
n=3

n!

3!
(T ∗)n−3. (27)

These equations completely specify the homogeneous part of the free energy within FL theory.
When evaluating formula (12) for γ ∗ (using e.g. Simpson’s rule), the total density ρ at any
particular point of interest along the z-axis has to be divided up into the ionic density ρi and
the pair density ρp according to the association equation (26).

The square-gradient term also involves contributions from ion–ion (II) interactions and
from dipole–ion (DI) interactions. For the MODA treatment and the AHNC relation, only gII

contributes to the coefficient cII = 2φII
∇2/(∇∗ρ∗

i )
2, while cDI = 2φDI

∇2/∇∗ρ∗
i · ∇∗ρ∗

p is det-
ermined by gDI. Since the coefficient c corresponds to the square-gradient of the total density,
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(∇∗ρ∗)2, the individual cik have to be weighted according to factors (∂ρi/∂ρ)T (∂ρk/∂ρ)T .
Thus, we obtain the overall coefficient from

c = cII

(
∂ρi

∂ρ

)2

T

+ cDI

(
∂ρi

∂ρ

)
T

(
∂ρp

∂ρ

)
T

. (28)

Explicitly, from the AHNC relation, we find

cII = π

12

1 + 2x + 2x2

T ∗2x3(1 + x)2
(29)

cDI = π

4

5 + 6ax + 2a2x2

T ∗2x(3 + 3ax + a2x2)2
. (30)

When local density approximations like DAPA, LADA or BAPA are used to compute the
square-gradient term, there will also be contributions from gDI to the coefficient cII, as can be
seen from (4). Due to the appearance of the derivative of gDI (which depends on ρi via κ)
with respect to ρi , there arise nonzero terms corresponding to a square-gradient (∇ρi)

2. The
formulae that we obtained for these treatments are, however, too lengthy to be displayed here.

Now we are prepared to calculate the interfacial properties of the RPM within DH and FL
theory. In figure 1, the coexistence curves following from these two theories are shown. First,
the densities of coexisting phases can be read off from this diagram, and, second, it clearly
demonstrates that the FL theory represents a substantial improvement over DH theory in that
it yields very good agreement with simulation results for the coexistence curve of the RPM.
The DH curve is much too narrow, leading to density differences between the liquid phase and
the vapour phase which are too small. To obtain reasonable estimates for the surface tension,
it is crucial to employ the FL theory instead of DH theory. (We have refrained from including
the MSA coexistence curve in figure 1, because, due to the high critical temperature within
the MSA, the region that we will focus on in this paper would appear unduly compressed in
the picture.)

3. Results and discussion

In this section, we will first investigate the implications of the local density approximations for
the interfacial properties within the Debye–Hückel theory. Subsequently, the results within
the more accurate Fisher–Levin theory are presented and, finally, compared with findings in
earlier studies of the liquid–vapour interface of ionic fluids which were also based on the RPM.

3.1. Debye–Hückel theory

The results for the density profiles and interfacial tensions within DH theory have already
been given elsewhere [23], but, as they are relevant to the discussion and the assessment of the
results from FL theory, we will summarize the major points here.

Figure 2 shows the density profiles obtained from the different methods to compute the
square-gradient term within DH theory at a temperature of T ∗ = 0.05 (or T/Tc = 0.8).
Except for the one following from the BAPA treatment (see [23]), the density profiles are
rather symmetric; however, they differ significantly in the predicted thickness of the interface:
while, using the AHNC relation, the ‘10–90’ thickness is merely four molecular diameters,
the interface extends over 20σ in the MODA approach. Equally dramatic are the differences
in the surface tensions, which are given in table 1. The tension obtained from MODA is five
times higher than the one from the AHNC relation, while the other treatments yield values
intermediate between these extremes. Nevertheless, even the most reasonable approximations
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Figure 2. Density profiles for an ionic model fluid within Debye–Hückel theory at a temperature
of T ∗ = 0.05 or T/Tc = 0.8. The profile is shown for various approximations to the local
density: MODA (dotted), LADA (short-dashed), DAPA (dash–dotted), BAPA (continuous), for
the GDH theory (dash–dot–dotted) and for the approach via the AHNC relation (long-dashed).
The abbreviations for the different local density approximations are explained in the main text.

Table 1. Results obtained within DH theory from the listed local density approximations, as
defined in section 2.1, the GDH theory and the AHNC relation, respectively, for the reduced
surface tension γ̄ = βcγ σ

2 and the correlation length in the liquid and in the vapour phase at
T ∗ = 0.05 (T/Tc = 0.8). In addition, the square of the prefactor aξ of the exact Lee–Fisher result
for ξ in the low-density limit is given.

Approximation γ̄ ξ∗
l ξ∗

v a2
ξ

MODA 0.0546 5.565 14.48 32
LADA 0.0370 3.833 9.586 14
DAPA 0.0305 3.429 7.259 8
BAPA 0.0151 2.314 0.581 0
GDH 0.0125 1.395 2.587 1
AHNC 0.0102 0.971 2.574 1

to the local density, DAPA and LADA, still differ by a factor of three or four, respectively, from
the AHNC result. Which one is to be believed? Help in reaching a decision comes from the
behaviour of the correlation length in the low-density limit. Lee and Fisher found from their
GDH theory the correct leading behaviour to be ξ = (b/9216πρ)1/4, where b = σ/T ∗ is the
Bjerrum length [20]. Qualitatively, this expression is also found within the other approaches
to the square-gradient term (except for the BAPA method), differing, however, by a numerical
coefficient in front of the exact Lee–Fisher expression, which we denote by aξ . This coefficient
has already been alluded to in section 2.3, where we compared the expansions of the various
results for the square-gradient term. As is seen in table 1, MODA, LADA and DAPA predict
correlation lengths in the low-density limit which are too large by factors of

√
32,

√
14 and

√
8,

respectively. Obviously, these factors also appear, with only minor changes, at finite densities,
i.e. in the values of the correlation lengths in the coexisting phases ξl and ξv (cf. table 1).
Since 4ξl gives a good estimate of the interfacial thickness [25], these factors are also visible
in the width of the density profiles as well as in the values of the surface tension due to both
quantities being proportional to c1/2. The AHNC relation, like the GDH theory, gives the exact
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expression and, thus, the correct value of aξ = 1.
From these observations, we are forced to conclude that the local density approximations

LADA and DAPA, which at first sight appear most reasonable, cannot be trusted for ionic fluids
(within DH theory) as they overestimate the thickness of the interface and the interfacial tension
by a factor of three [23]. Most reliable appear the AHNC relation and the GDH theory, as they
require no local density approximation, lead to the correct behaviour of ξ in the low-density
limit and are self-consistent in a sense that the compressibility calculated from the respective
direct correlation functions that they predict equals the one obtained from differentiating the
free-energy density twice with respect to density.

The above comparison was only relative in nature; in general, we cannot expect to obtain
good absolute numerical estimates of the surface tension in the RPM from such an inaccurate
theory as the DH theory. The narrow coexistence curve within DH theory (cf. figure 1) leads
to too small a difference ρl −ρv and, thus, we must suspect that the values of γ̄ given in table 1
are also too low. To remove this shortcoming, we will now examine the interfacial properties
within FL theory.

3.2. Fisher–Levin theory

In the present analysis, we will restrict ourselves to the AHNC relation, which is comput-
ationally significantly less demanding than the GDH theory while still yielding similar results
[22, 23], and to the DAPA treatment in order to check by means of an example whether the
above statements on the sensitivity of the correlation length and the interfacial properties to
the local density approximation within DH theory remain valid for the FL theory.

The results for the reduced surface tension γ̄ = γ ∗/T ∗
c = βcγ σ

2 are given in table 2 along
with the correlation lengths in the coexisting phases. We have compiled the predictions of the
AHNC and the DAPA treatments within FL theory at a reduced temperature of T/Tc = 0.8 and
those within DH theory for comparison. Since, as we will argue in the following, the AHNC-
FL theory must be regarded as the most trustworthy one, we have calculated the interfacial
properties for this theory at other temperatures (T/Tc = 0.9, 0.95) as well. These values are
to be compared with the results of Groh et al [25] from their study based on density-functional
theory, which uses the MSA in conjunction with the LADA, in section 3.3. The density profiles
that we obtained for the AHNC-FL theory at T/Tc = 0.8, 0.9, 0.95 are shown in figure 3 along

Table 2. Reduced correlation length in the liquid phase ξ∗
l and in the vapour phase ξ∗

v as well
as reduced surface tension γ̄ = βcγ σ

2 for different temperatures as obtained from the AHNC
relation or the DAPA method, respectively, in conjunction with either the Fisher–Levin (FL) or the
Debye–Hückel (DH) theory. For comparison, we have also compiled the results of Groh et al from
their LADA-MSA1 treatment [25] and the density differences of the coexisting phases ρ∗

l − ρ∗
v at

the respective temperatures for all three theories.

Approximation T ∗ T/Tc ξ∗
l ξ∗

v γ̄ ρ∗
l − ρ∗

v

AHNC-FL 0.0459 0.8 1.19 0.82 0.030 0.325
AHNC-FL 0.0517 0.9 1.64 1.60 0.0086 0.125
AHNC-FL 0.0545 0.95 2.27 2.44 0.0028 0.065
DAPA-FL 0.0459 0.8 3.40 1.92 0.073 0.325
AHNC-DH 0.05 0.8 0.97 2.57 0.010 0.060
DAPA-DH 0.05 0.8 3.43 7.26 0.031 0.060
LADA-MSA1 0.0677 0.8 1.6 6.1 0.037 0.092
LADA-MSA1 0.0761 0.9 2.5 5.3 0.015 0.054
LADA-MSA1 0.0804 0.95 3.6 5.9 0.006 0.035
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Figure 3. Density profiles across the liquid–vapour interface within Fisher–Levin theory at different
temperatures. The square-gradient term has been calculated using an approximate hypernetted-
chain relation (AHNC) or a local density approximation (DAPA; see the main text): AHNC at
T/Tc = 0.8 (continuous), AHNC at T/Tc = 0.9 (dotted), AHNC at T/Tc = 0.95 (dash–dotted)
and DAPA at T/Tc = 0.8 (long-dashed).

with the one that results from the DAPA-FL treatment at T/Tc = 0.8.
To start with these profiles, it is seen from figure 3 that, at a temperature of T/Tc = 0.8, the

profile obtained from DAPA-FL theory (long-dashed) is about three times broader than the one
following from the AHNC-FL theory (continuous); the ‘10–90’ thickness at this temperature
is about 5σ within AHNC-FL theory compared to 14σ for the DAPA-FL treatment. So, the
interfacial thickness is about the same as the one found within DH theory for both approaches,
AHNC and DAPA. The same is true for the correlation length in the liquid phase: AHNC-FL
theory leads to ξ ∗

l = 1.19 compared to ξ ∗
l = 0.97 within DH theory, while the DAPA-FL

theory gives ξ ∗
l = 3.40 which is almost the same as the DAPA-DH result of ξ ∗

l = 3.43. Thus,
again, in all cases the thickness of the interface is given by 4ξl . Furthermore, it is clearly
seen that choosing a particular local density approximation like DAPA leads to an almost
density-independent and, thereby, constant factor of three compared to the results from the
AHNC relation, which persists from the behaviour of ξ in the low-density limit to ξl and,
consequently, to the interfacial thickness at finite densities. This is observed in DH theory as
well as in FL theory. From AHNC-DH to AHNC-FL theory, the reduced surface tension γ̄
increases by a factor of three. This increase must be attributed to the larger density difference
ρl − ρv in the FL theory (cf. table 2).

Because of the behaviour in the low-density limit, we trust the results from the AHNC
relation rather than those from the DAPA treatment. This is why we compute the interfacial
properties of the RPM at different temperatures only for the AHNC-FL theory. From figure 3, it
is seen that, as expected, the density profile broadens as the critical temperature is approached.
At the same time, the surface tension decreases and vanishes asymptotically near the critical
point as γ̄ ∼ (1 − T/Tc)

3/2 within a mean-field theory such as the present one. According
to our calculations, a description in terms of this asymptotic power law is, however, only
appropriate for T/Tc > 0.98, a region in which mean-field theory ceases to be valid anyway.
As the critical point is approached from T/Tc = 0.8 within AHNC-FL theory, the correlation
length increases, with the interfacial thickness still given by 4ξl . At T/Tc = 0.9 the correlation
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lengths in the coexisting phases are almost equal, while we have ξv < ξl for T/Tc < 0.9 and
ξv > ξl for T/Tc > 0.9. Accordingly, the asymmetry of the density profiles is inverted at
this temperature. While for T/Tc < 0.9 the decay to the bulk density is more rapid on the
vapour side, the opposite is the case for T/Tc > 0.9. Within square-gradient theory, the
asymmetry of the profile is determined by whether ξv < ξl (yielding a more rapid decay to the
bulk density on the vapour side) or ξv > ξl (leading to the opposite asymmetry of the profile).
Telo da Gama et al [32] studied the RPM using the GMSA in a square-gradient theory and
found a more rapid decay on the liquid side for all temperatures, which is in accordance with
our results from DH theory (except for the pathological BAPA case). The opposite behaviour
was found by Groh et al [25] in their study based on the MSA and density-functional theory.
Here, within AHNC-FL theory, the asymmetry turns out to be temperature dependent due to
the change of the correlation lengths in both phases. We will take this opportunity to compare
the variation of the correlation length along the coexistence curve within the AHNC-FL and
AHNC-DH theories. The results are shown in figure 4. Whereas ξl is expected to decay
monotonically when moving away from the critical point, as seen in figure 4 for both the FL
theory (dash–dotted) and the DH theory (continuous), the behaviour on the vapour side of the
coexistence curve is different for ionic fluids. Within DH theory, ξv (dotted) passes through
a minimum as it diverges both at the critical point and in the low-density limit (according to
the Lee–Fisher expression; see above). This is true when ionic association is neglected, as is
done in DH theory. Along the vapour branch of the coexistence curve, both the density and
the temperature decrease, but, according to the Lee–Fisher result, lowering the temperature
as ρ → 0 even increases ξ . In association theories, such as the present FL theory, there
is a competition in the low-density, low-temperature phase between the dissociation process,
favoured by the low density, and the association process, which is favoured by low temperatures.
Which of these tendencies will ultimately prevail is expected to depend on the theory used in
the computations. Within FL theory in connection with the Bjerrum association constant (27),
the numerical evidence that we obtained for the region 0.5 < T/Tc < 1 points towards a nearly

0.6 0.7 0.8 0.9 1
T / Tc

1

2

3

4
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ξ ∗

Figure 4. Correlation lengths in the liquid phase and in the vapour phase within Debye–Hückel
(DH) theory and Fisher–Levin (FL) theory, respectively, in conjunction with the AHNC relation.
DH: ξ∗

v (dotted), ξ∗
l (continuous); FL: ξ∗

v (long-dashed), ξ∗
l (dash–dotted).
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complete depletion of free ions in the low-temperature vapour phase. This in turn means that,
in the end, there are no free ions left which could cause ξv to diverge according to the Lee–
Fisher expression in the low-density, but also low-temperature limit. This ultimate behaviour
is, however, purely hypothetical within a theory for the fluid phases as the line of liquid–vapour
equilibrium terminates at the triple point, which, for the RPM, has been estimated to be located
at T ∗

tr = 0.025 and ρ∗
tr = 0.5 [33]. In addition to this, we cannot recommend employing the FL

theory in its present form at reduced temperatures below T/Tc = 0.7, since then the density
of the liquid phase becomes unrealistically high and hard-sphere contributions can no longer
be neglected. In summary, we may state that while for the AHNC-DH theory ξv is always
larger than ξl , for the AHNC-FL treatment ξv drops below ξl for T/Tc < 0.9 (cf. figure 4) due
to pronounced ion pairing in the vapour phase. The formation of dipolar ion pairs reduces ξv
as compared to the correlation length in the vapour phase within DH theory; ξl , in contrast,
remains almost the same (see table 2), as the degree of ion pairing is not that high in the
liquid phase. While there is no minimum of ξv within AHNC-FL theory, the one found in
AHNC-DH theory is located at T/Tc = 0.9. Very much the same numerical value was found
in the MSA-based treatment of Groh et al [25].

3.3. Comparison with results of earlier studies

As mentioned in the introduction, Groh et al employ the MSA in conjunction with the LADA to
obtain results for the interfacial properties and the correlation length in their density-functional
theory, which goes beyond the square-gradient approximation. The standard MSA (probably
incorrectly) leads to effective potentials for the density–density correlations which decay
algebraically for large separations, whereas the density–density correlation function is expected
to decay exponentially in this limit [34,35]. As a remedy, Groh et al introduce the MSA variant
‘MSA1’, in which, in contrast to the standard MSA, the thermodynamic integration (or, for
ionic fluids, the charging process) is left out. Doing so amounts to replacing the residual
free energy by the configurational internal energy that is due to ion–ion interactions. Within
this MSA1, the decay of the above-mentioned functions is indeed exponential [25]. As Groh
et al [25] show, the differences with respect to the coexistence curve between MSA and
MSA1 are minor; both approaches overestimate the critical temperature significantly and the
agreement of the coexistence curves with results from simulations is not satisfactory. The
omission of the thermodynamic integration in MSA1 leads to a prefactor of aξ = √

7 in front
of the Lee–Fisher expression for ξ in the low-density limit, instead of the

√
14 expected for

the LADA treatment employed. (In the low-density limit, the correlation functions predicted
by the MSA and the DH theory become identical, so they give the same aξ for a chosen
local density approximation.) So, if it were possible to extrapolate the factor aξ arising from
different approximations to the local density in the correlation length in the low-density limit
to the properties at finite densities, which worked so well for the DH theory, within this MSA-
based density-functional theory, we would expect the surface tension obtained from the MSA
to be larger than that from MSA1 by a factor of about

√
14/

√
7 = √

2. Indeed, the presence
of such a factor can be seen in figure 6 of the paper by Groh et al [25], in which the surface
tensions resulting from MSA and MSA1 are compared. In fact, the observed factor is even
larger than

√
2—about 1.6—due to a larger difference ρl − ρv at the same T/Tc for the MSA,

which has a lower critical temperature. It is difficult to separate the two contributions, but it
can safely be stated that both mechanisms are at work here. This observation strongly suggests
that extrapolation from the low-density limit is approximately valid and that the MSA has the
same sensitivity towards the local density approximation as the DH-based theories (although
this has not been checked explicitly). We therefore argue that our results from the AHNC-
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FL theory are more reliable, at least in a temperature range in which the density gradient is
small, say, for 0.85 � T/Tc � 0.95. Closer to the critical point, mean-field theory will fail.
The only weakness of our approach is the simple density functional in the square-gradient
theory; the thermodynamic description by FL theory is reliable and the AHNC route to the
square-gradient term apparently as well. Groh et al use a thermodynamic theory (MSA or
MSA1) that cannot be considered to give an accurate account of the properties of the RPM
(as judged from the coexistence curve) and the use of the LADA is at least questionable for
ionic fluids. A point in favour of their work is that they employ a more elaborate nonlocal
density-functional approach. The main intention of the work of Groh et al, however, was to
obtain information from the MSA, which works so well in many other cases, but in the context
of interfacial properties turns out to be useless if employed in ‘standard’ ways. So, it was not
their primary goal to obtain the best-possible numerical estimates for the interfacial properties.
Consequently, they only claim that their results give the right order of magnitude, which is
certainly in accordance with our results and the ones found by Telo da Gama et al [32] from
their GMSA-based study. The accuracy of the results from the latter approach is limited by the
restriction to small gradients due to the square-gradient theory employed and, additionally, by
using the GMSA, which yields a coexistence curve that is almost identical to the one obtained
from the MSA. On the other hand, within the GMSA, there is no doubt about the correct
route to the square-gradient term via the direct correlation function and, therefore, also no
need to introduce a local density approximation. The approach of Groh et al generally leads
to larger results for the interfacial tension than the GMSA square-gradient treatment at the
same reduced temperature [25]. Furthermore, within the standard MSA (as opposed to the
MSA1), the interfacial tensions are twice as high as within the GMSA [25], closer to the
critical point even three times higher. This, again, points to an overestimation of γ̄ that might
be due to the use of the LADA, given that the coexistence curves are almost identical. In
contrast, the predictions of the GMSA and the AHNC-FL theory agree very well, with the
GMSA values being slightly larger. For T/Tc � 0.85, the relatively large values of ρl − ρv
combined with the small interfacial thickness at these temperatures result in gradients which
might be too large to render the square-gradient theory valid. In this temperature region the
results of the LADA-MSA1 and the AHNC-FL differ only by 20%, which may be accidental.
At higher temperatures, however, the results from AHNC-FL theory are smaller by a factor of
two compared to the LADA-MSA1 results (cf. table 2). Here, the gradient is smaller; thus,
square-gradient theory should be valid, and we tend to trust the AHNC-FL results more on the
grounds of the arguments outlined above.

4. Conclusions

We have calculated interfacial tensions and density profiles for the liquid–vapour interface of
the RPM of ionic fluids within the currently most successful theory for the thermodynamic
properties of the RPM, the Fisher–Levin theory, and a relatively simple square-gradient theory.
It was observed that within DH theory and its extension, the FL theory, one has to choose
carefully the method by which to compute the square-gradient term. For different local density
approximations, the results for the surface tension and the interfacial thickness may vary by
factors of 3–5. A guideline to a reliable local density approximation or, alternatively, to a
reliable approximate direct correlation function, from which the square-gradient term can be
calculated, is provided by the behaviour of the correlation length in the low-density limit.
Here, we rely on the computationally simple to use AHNC relation for the direct correlation
function. The GDH theory of Lee and Fisher [20] would, in principle, also be appropriate, but
is mathematically more demanding than the AHNC route. Both the AHNC relation and the
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GDH theory yield correct results in the low-density limit and are ‘self-consistent’ within the
DH theory in the sense specified above.

From our approach, which to our knowledge is the first attempt to compute the interfacial
properties of an ionic fluid within an association theory, we expect to obtain reliable results
for the temperature range 0.85 � T/Tc � 0.95, in which the gradient is not too large. To
arrive at more accurate results at lower temperatures, one could, of course, improve upon the
simple square-gradient theory by using a more elaborate nonlocal density-functional theory.
Unfortunately, there appear to be no simulations for the RPM against which to check our results.
The molecular-dynamics study by Heyes and Clarke uses the more realistic Born–Mayer–
Huggins potential model and is concerned with rather low temperatures [36]. Nevertheless,
we believe that the AHNC-FL square-gradient theory offers a promising and tractable approach
to the interfacial properties of ionic fluids.
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